首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   4篇
化学   101篇
数学   2篇
物理学   9篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   10篇
  2006年   14篇
  2005年   3篇
  2004年   4篇
  2003年   9篇
  2002年   8篇
  2001年   8篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
41.
42.
Ring-opening metathesis polymerization (ROMP) of rac-endo,exo-5,6-dicarbomethoxynorbornene (inter alia) yields a cis,syndio,alt-polymer, one in which the sequential units in the cis,syndiotactic polymer consist of alternating enantiomers. Cis selectivity arises through addition of the monomer to produce an all-cis-metallacyclobutane intermediate, while syndioselectivity and alternating enantiomer structures arise as a consequence of inversion of configuration at the metal center with each metathesis step.  相似文献   
43.
Kinetically controlled catalytic cross‐metathesis reactions that generate (Z)‐α,β‐unsaturated esters selectively are disclosed. A key finding is that the presence of acetonitrile obviates the need for using excess amounts of a more valuable terminal alkene substrates. On the basis of X‐ray structure and spectroscopic investigations a rationale for the positive impact of acetonitrile is provided. Transformations leading to various E,Z‐dienoates are highly Z‐selective as well. Utility is highlighted by application to stereoselective synthesis of the C1–C12 fragment of biologically active natural product (?)‐laulimalide.  相似文献   
44.
The redox properties of [HIPTN(3)N]Mo complexes (where HIPTN(3)N = (3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)NCH(2)CH(2))(3)N) involved in the catalytic dinitrogen reduction cycle were studied using cyclic voltammetry in fluorobenzene with Bu(4)NPF(6) as the electrolyte. MoN(2) (Mo = [HIPTN(3)N]Mo, E(1/2) = -1.96 V vs. Fc(+)/Fc at a Pt electrode), Mo≡N (E(1/2) = -2.68 V vs. Fc(+)/Fc (Pt)), and [Mo(NH(3))]BAr'(4) (Ar' = 3,5-(CF(3))(2)C(6)H(3), E(1/2) = -1.53 V vs. Fc(+)/Fc (Pt)) each undergo a chemically reversible one-electron reduction, while [Mo=NNH(2)]BAr'(4) (E(1/2) = -1.50 V vs. Fc(+)/Fc (Pt)) and [Mo=NH]BAr'(4) (E(1/2) = -1.26 V vs. Fc(+)/Fc (Pt)) each undergo a one-electron reduction with partial chemical reversibility. The acid employed in the catalytic reduction, [2,4,6-collidinium]BAr'(4), reduces irreversibly at -1.11 V vs. Fc(+)/Fc at Pt and at -2.10 V vs. Fc(+)/Fc at a glassy carbon electrode. The reduction peak potentials of the Mo complexes shift in the presence of acids. For example, the reduction peak for MoN(2) in the presence of [2,4,6-collidinium]BAr'(4) at a glassy carbon electrode shifts positively by 130 mV. The shift in reduction potential is explained in terms of reversible hydrogen bonding and/or protonation at a nitrogen site in Mo complexes. The significance of productive and unproductive proton-coupled electron transfer reactions in the catalytic dinitrogen reduction cycle is discussed.  相似文献   
45.
The first catalytic asymmetric ring-closing metathesis method for the synthesis of N-containing heterocycles is reported; this is accomplished through Mo-catalyzed kinetic resolution or desymmetrization of unsaturated amines. Importantly, this catalytic asymmetric method delivers medium-ring unsaturated amines (including eight-membered rings) in high yield, with exceptional enantioselectivity and without the need for solvents. These enantioselective reactions can be effected by catalysts prepared in situ from commercially available reagents.  相似文献   
46.
Electron deficient high oxidation state early transition metal complexes that contain metal-carbon double or triple bonds and bulky supporting ligands have been found to be highly reactive catalysts for the alkene and alkyne metathesis reactions, respectively.  相似文献   
47.
Studies regarding the first examples of catalytic asymmetric ring-opening metathesis (AROM) reactions are detailed. This enantioselective cleavage of norbornyl alkenes is followed by an intermolecular cross metathesis with a terminal olefin partner; judicious selection of olefin is required so that oligomerization and dimerization side products are avoided. Results outlined herein suggest that the presence of suitably positioned heteroatom substituents may be critical to reaction efficiency. Mo-catalyzed tandem AROM/CM affords functionalized cyclopentyl dienes in >98% ee and >98% trans olefin selectivity; both secondary and tertiary ether products can be obtained. The examples provided include the catalytic synthesis of an optically pure cyclopentyl epoxide and dimethyl acetal. Mechanistic studies suggest that it is the more substituted benzylidene or silylated alkylidenes that are involved in the catalytic process (vs the corresponding Mo-methylidenes). Although electron rich benzylidenes react more efficiently, the derived electron poor Mo complexes promote AROM/CM transformations as well; alkylidenes that bear a boron substituent are unreactive.  相似文献   
48.
In this paper we explore several issues surrounding the catalytic reduction of dinitrogen by molybdenum compounds that contain the [(HIPTNCH2CH2)3N]3- ligand (where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3). Four additional plausible intermediates in the catalytic dinitrogen reduction have now been crystallographically characterized; they are MoN= NH (Mo = [(HIPTNCH2CH2)3N]Mo), [Mo=NNH2][BAr'4] (Ar' = 3,5-(CF3)2C6H3), [Mo=NH][BAr'4], and Mo(NH3). We also have crystallographically characterized a 2,6-lutidine complex, Mo(2,6-Lut)+, which is formed upon treatment of MoH with [2,6-LutH][B(C6F5)4]. We focus on the synthesis of compounds that have not yet been isolated, which include Mo=NNH2, Mo=NH, and Mo(NH2). Mo=NNH2, formed by reduction of [Mo=NNH2]+, has not been observed. It decomposes to give mixtures that contain two or more of the following: MoN=NH, Mo triple bond N, Mo(NH3)+, Mo(NH3), and ammonia. Mo=NH, which can be prepared by reduction of [Mo=NH]+, is stable for long periods in the presence of a small amount of CrCp*2, but in the absence of CrCp*2, and in the presence of Mo=NH+ as a catalyst, Mo=NH is slowly converted into a mixture of Mo triple bond N and Mo(NH2). Mo(NH2) can be produced independently by deprotonation of Mo(NH3)+ with LiN(SiMe3)2 in THF, but it decomposes to Mo triple bond N upon attempted isolation. Although catalytic reduction of dinitrogen could involve up to 14 intermediates in a "linear" sequence that involves addition of "external" protons and/or electrons, it seems likely now that several of these intermediates, along with ammonia and/or dihydrogen, can be produced in several reactions between intermediates that themselves behave as proton and/or electron sources.  相似文献   
49.
Molybdenum complexes that contain the triamidoamine ligand [(RNCH(2)CH(2))(3)N](3-) (R = 3,5-(2,4,6-iPr(3)C(6)H(2))(2)C(6)H(3)) catalyze the reduction of dinitrogen to ammonia at 22 degrees C and 1 atm with protons from 2,6-dimethylpyridinium and electrons from decamethylchromocene. Several theoretical studies have been published that bear on the proposed intermediates in the catalytic dinitrogen reduction reaction and their reaction characteristics, including DFT calculations on [(HIPTNCH(2)CH(2))(3)N]Mo species (HIPT =hexaisopropylterphenyl = 3,5-(2,4,6-iPr(3)C(6)H(2))(2)C(6)H(3)), which contain the actual triamidoamine ligand that is present in catalytic intermediates. Recent theoretical findings are compared with experimental findings for each proposed step in the catalytic reaction.  相似文献   
50.
The tungsten nitrido species, [W(mu-N)(CH2-t-Bu)(OAr)2]2 (Ar = 2,6-diisopropylphenyl), has been prepared in a reaction between the alkylidyne species, W(C-t-Bu)(CH2-t-Bu)(OAr)2, and organonitriles. The dimeric nature of the nitride was established in the solid state through an X-ray study and in solution through a combination of 15N NMR spectroscopy and vibrational spectroscopy. Reaction of the nitride with trimethylsilyl trifluoromethanesulfonate afforded the monomeric trimethylsilyl imido species, W(NSiMe3)(CH2-t-Bu)(OAr)2(OSO2CF3), which was also characterized crystallographically. The W2N2 core can be reduced by one electron electrochemically or in bulk with metallocenes to afford the radical anion, {n-Bu4N}{[W(mu-N)(CH2-t-Bu)(OAr)2]2}. Density functional theory calculations suggest that the lowest-energy allowable transition in [W(mu-N)(CH2-t-Bu)(OAr)2]2 is from a highest occupied molecular orbital consisting largely of ligand-based lone pairs into what is largely a metal-based lowest unoccupied molecular orbital.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号